Subset Feedback Vertex Set Is Fixed-Parameter Tractable

نویسندگان

  • Marek Cygan
  • Marcin Pilipczuk
  • Michal Pilipczuk
  • Jakub Onufry Wojtaszczyk
چکیده

The classical FEEDBACK VERTEX SET problem asks, for a given undirected graph G and an integer k, to find a set of at most k vertices that hits all the cycles in the graph G. FEEDBACK VERTEX SET has attracted a large amount of research in the parameterized setting, and subsequent kernelization and fixed-parameter algorithms have been a rich source of ideas in the field. In this paper we consider a more general and difficult version of the problem, named SUBSET FEEDBACK VERTEX SET (SUBSET-FVS in short) where an instance comes additionally with a set S ⊆ V of vertices, and we ask for a set of at most k vertices that hits all simple cycles passing through S. Because of its applications in circuit testing and genetic linkage analysis SUBSET-FVS was studied from the approximation algorithms perspective by Even et al. [SICOMP’00, SIDMA’00]. The question whether the SUBSET-FVS problem is fixed-parameter tractable was posed independently by Kawarabayashi and Saurabh in 2009. We answer this question affirmatively. We begin by showing that this problem is fixed-parameter tractable when parametrized by |S|. Next we present an algorithm which reduces the given instance to 2n instances with the size of S bounded by O(k), using kernelization techniques such as the 2-Expansion Lemma, Menger’s theorem and Gallai’s theorem. These two facts allow us to give a 2 log n time algorithm solving the SUBSET FEEDBACK VERTEX SET problem, proving that it is indeed fixed-parameter tractable.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parameterized algorithms for feedback set problems and their duals in tournaments

The parameterized feedback vertex (arc) set problem is to find whether there are k vertices (arcs) in a given graph whose removal makes the graph acyclic. The parameterized complexity of this problem in general directed graphs is a long standing open problem. We investigate the problems on tournaments, a well studied class of directed graphs. We consider both weighted and unweighted versions. W...

متن کامل

Graph isomorphism parameterized by feedback vertex set number is fixed-parameter tractable

We prove that the Graph Isomorphism problem is fixed-parameter tractable when parameterized by the feedback vertex set number. That parameter is defined as the number of vertex deletions required to obtain a forest. For graphs of bounded feedback vertex set number the presented algorithm runs in time O(n), and is thereby the first fixed-parameter tractable Graph Isomorphism algorithm for a non-...

متن کامل

Directed Feedback Vertex Set Problem is FPT

To decide if the parameterized feedback vertex set problem in directed graph is fixed-parameter tractable is a long time open problem. In this paper, we prove that the parameterized feedback vertex set in directed graph is fixed-parameter tractable and give the first FPT algorithm of running time O((1.48k)n) for it. As the feedback arc set problem in directed graph can be transformed to a feedb...

متن کامل

Directed Feedback Vertex Set is Fixed-Parameter Tractable

We resolve positively a long standing open question regarding the fixed-parameter tractability of the parameterized Directed Feedback Vertex Set problem. In particular, we propose an algorithm which solves this problem in O(8k! ∗ poly(n)).

متن کامل

Structural Parameterizations of Feedback Vertex Set

A feedback vertex set in an undirected graph is a subset of vertices whose removal results in an acyclic graph. It is well-known that the problem of finding a minimum sized (or k-sized in case of decision version of) feedback vertex set (FVS) is polynomial time solvable in (sub)-cubic graphs, in pseudo-forests (graphs where each component has at most one cycle) and mock-forests (graphs where ea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011